mcsas3.osb.optimizeScalingAndBackground#
- class mcsas3.osb.optimizeScalingAndBackground(measDataI=None, measDataISigma=None, xBounds=None)[source]#
Bases:
object
small class derived from the McSAS mcsas/backgroundscalingfit.py class, quickly provides an optimized scaling and background value for two datasets.
TODO (maybe): include a porod background contribution? If so, Q should be available to this class.
- Parameters:
measDataI – numpy array of measured intensities
measDataISigma – associated uncertainties
modelDataI – array of model intensities.
x0 – optional, two-element tuple with initial guess for scaling and background
xBounds – optional, constraints to the optimization, speeds up when appropriate constraints are given
- Returns:
x – length 2 ndarray with optimized scaling parameter and background parameter
cs – final reduced chi-squared
Usage example:
o = optimizeScalingAndBackground(measDataI, measDataISigma) xOpt, rcs = o.match(modelDataI)
Methods
__init__
([measDataI, measDataISigma, xBounds])initialGuess
(optI)match
(modelDataI[, x0])optFunc
(sc, measDataI, measDataISigma, ...)validate
()Attributes
measDataI
measDataISigma
xBounds