Ramberg Osgood material law =========================== Introduction and governing equations ------------------------------------ The ramberg osgood material law can be used to model ductile behaviour for monotonic loading and is often used in fracture mechanics applications. In contrast to incremental plasticity models stress and strain are directly related and thus the ramberg osgood model is in fact a nonlinear elastic model. While algorithmically the solution of the ramberg osgood constitutive law in a FE code is rather simple, it involves the solution of a power law (on integration point level) which can be challenging with regard to the implementation in FEniCS (dolfin version 2019.1.0). As in the other examples in the following we subclass the ``dolfin.NonlinearProblem`` to interact with the ``dolfin.NewtonSolver`` and solve the linearized principle of vitual power in each iteration. The consistent tangent and stress are functions in a quadrature space and *filled* manually after solving the constitutive equations in a pure numpy code. Linearized principle of virtual power: .. math:: \int_\Omega \boldsymbol \varepsilon \cdot \frac{\partial \boldsymbol\sigma}{\partial \boldsymbol\varepsilon} \cdot \boldsymbol \varepsilon \;\mathrm{d}x = f_{\mathrm{ext}} - \int_\Omega \boldsymbol \sigma \cdot \boldsymbol \varepsilon \;\mathrm{d}x Constitutive law **************** For the sake of brevity we skip a derivation of the equations only summarize the ones essential for the presented implementation. The strain is given by .. math:: \boldsymbol{\varepsilon} = \frac{1}{3K} (\boldsymbol{\sigma} \cdot \boldsymbol I) \boldsymbol{I} + \left( \frac{1}{2G} + \frac{3\alpha}{2E} {\left( \frac{\sigma_{\mathrm{v}}}{\sigma_{\mathrm{y}}} \right)}^{n-1} \right) \boldsymbol{\sigma'}, where the stress deviator is denoted by :math:`\boldsymbol \sigma'` and the equivalent stress is .. math:: \sigma_{\mathrm{v}} = \sqrt{\frac{3}{2} \boldsymbol \sigma' \cdot \boldsymbol \sigma'}. :math:`E, \nu, \alpha, n` and :math:`\sigma_{\mathrm{y}}` are material parameters (bulk modulus :math:`K` and shear modulus :math:`G` are given in terms of :math:`E` and :math:`\nu`). Inversion of the strain stress relation: .. math:: \boldsymbol \sigma = \frac{2 \sigma_{\mathrm{v}}}{3 \varepsilon_{\mathrm{v}}} \boldsymbol \varepsilon' + \frac{K}{3} (\boldsymbol\varepsilon \cdot \boldsymbol I) \boldsymbol I Equivalent stress and equivalent strain are related via a power law and for given :math:`\varepsilon_{\mathrm{v}}` we can determine :math:`\sigma_{\mathrm{v}}` by finding the root of: .. math:: f(\sigma_{\mathrm{v}}) = \frac{2}{3} \sigma_{\mathrm{v}} \left( \frac{1}{2G} + \frac{3 \alpha}{2E} \left(\frac{\sigma_{\mathrm{v}}}{\sigma_{\mathrm{y}}}\right)^{n-1} \right) - \varepsilon_{\mathrm{v}}\,. Consistent tangent: .. math:: \frac{\partial \boldsymbol \sigma}{\partial \boldsymbol \varepsilon} = \frac{2\sigma_{\mathrm{v}}}{3\varepsilon_{\mathrm{v}}}\left( \boldsymbol I - \frac{2}{3\varepsilon_{\mathrm{v}}}\left( \frac{1}{\varepsilon_{\mathrm{v}}} - \frac{1}{ \frac{\sigma_{\mathrm{v}}}{3G} + \alpha n \frac{\sigma_{\mathrm{y}}}{E} {\left(\frac{\sigma_{\mathrm{v}}}{\sigma_{\mathrm{y}}}\right)}^{n} } \right)\boldsymbol{\varepsilon}' \circ \boldsymbol{\varepsilon}' \right) + \frac{1}{3}\left(K - \frac{2\sigma_{\mathrm{v}}}{3 \varepsilon_{\mathrm{v}}}\right) \boldsymbol{I} \circ \boldsymbol{I} Algorithm to compute stress and consistent tangent for a given strain state: 1. Compute equivalent strain :math:`\varepsilon_{\mathrm{v}}`, 2. Compute equivalent stress :math:`\sigma_{\mathrm{v}}` via newton method (previous stress state can be used as initial guess), 3. Compute stress, 4. Compute consistent tangent :: from helper import * import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter import numpy as np Solution of the constitutive law -------------------------------- The solution of the power law mentioned above makes a vectorization of the numpy code difficult. Hence we could use a C++ function/class to solve the constitutive law. Another option is the use of `numba `_ to speed up the numpy code. :: import numba @numba.njit def solve_ramberg_osgood(E, NU, ALPHA, NEXP, SIGY, NGAUSS, GDIM, STRAIN, STRESS): """solve ramberg osgood constitutive equation for each integration point in the computational domain Parameters ---------- E : float young's modulus NU : float poisson ratio ALPHA : float ramberg osgood parameter 1 NEXP : int ramberg osgood paramter 2 SIGY : float yield stress NGAUSS : int total number of gauss points GDIM : int geometrical dimension STRAIN : np.ndarray strain value of each cell in Omega STRESS : np.ndarray previous stress state Returns ------- STRESS : np.ndarray stress for each integration point DDSDDE : np.ndarray tangent for each integration point """ LAMBDA = E * NU / (1 + NU) / (1 - 2 * NU) MU = E / (2 * (1 + NU)) K = E / (1 - 2 * NU) # bulk modulus DDSDDE = np.zeros((NGAUSS, GDIM * 2, GDIM * 2)) if GDIM == 2: Cel = np.array( [ [LAMBDA + 2 * MU, LAMBDA, LAMBDA, 0.0], [LAMBDA, LAMBDA + 2 * MU, LAMBDA, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 2 * MU], ] ) elif GDIM == 3: Cel = np.array( [ [LAMBDA + 2 * MU, LAMBDA, LAMBDA, 0.0, 0.0, 0.0], [LAMBDA, LAMBDA + 2 * MU, LAMBDA, 0.0, 0.0, 0.0], [LAMBDA, LAMBDA, LAMBDA + 2 * MU, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 2 * MU, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 2 * MU, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 2 * MU], ] ) zero_strain_tolerance = 1e-12 sv_tol = 1e-12 maxiter = 50 # helpers voigt notation I2 = np.zeros(GDIM * 2, dtype=np.double) # Identity of rank 2 tensor I2[0] = 1.0 I2[1] = 1.0 I2[2] = 1.0 I4 = np.eye(GDIM * 2, dtype=np.double) # Identity of rank 4 tensor for n in range(NGAUSS): # strain at time t + delta t eps = STRAIN[n] tr_eps = np.sum(eps[:3]) eps_dev = eps - tr_eps * I2 / 3 ev = np.sqrt(2.0 / 3.0 * np.dot(eps_dev, eps_dev)) if ev < zero_strain_tolerance: # return elastic tangent STRESS[n] = Cel @ eps DDSDDE[n] = Cel else: # compute correct tangent and stress # stress at time t sig = STRESS[n] tr_sig = np.sum(sig[:3]) sig_dev = sig - tr_sig * I2 / 3 # equivalent stress at time t is used as initial guess sv_initial = np.sqrt(3.0 / 2.0 * np.dot(sig_dev, sig_dev)) # stress at time t + delta t if sv_initial <= SIGY: sv = sv_initial else: # initial_guess is > sigy sv = (SIGY ** (NEXP - 1.0) * E * ev / ALPHA) ** (1.0 / NEXP) def f(x): stuff = 1.0 / (2.0 * MU) + 3.0 / (2.0 * E) * ALPHA * (x / SIGY) ** ( NEXP - 1.0 ) return stuff * 2.0 / 3.0 * x - ev def df(x): return 1.0 / (3.0 * MU) + NEXP * ALPHA / E * (x / SIGY) ** (NEXP - 1.0) s = f(sv) ds = df(sv) niter = 0 while abs(f(sv)) > sv_tol: sv = sv - s / ds s = f(sv) ds = df(sv) niter += 1 if niter > maxiter: break sig_dev = 2.0 * sv / 3.0 / ev * eps_dev tr_sig = K * tr_eps sig = tr_sig * I2 / 3.0 + sig_dev STRESS[n] = sig nenner = sv / (3.0 * MU) + ALPHA * NEXP * SIGY / E * ((sv / SIGY) ** (NEXP)) tangent = 2 * sv / 3 / ev * ( I4 - 2.0 / 3.0 / ev * (1.0 / ev - 1.0 / nenner) * np.outer(eps_dev, eps_dev) ) + 1.0 / 3.0 * (K - 2 * sv / (3 * ev)) * np.outer(I2, I2) DDSDDE[n] = tangent return STRESS, DDSDDE Voigt notation ************** It is common practice in computational mechanics to only store six of the nine components of the symmetric (cauchy) stress and strain tensors. We choose an orthonormal tensor (voigt) basis which preserves the properties of the scalar product, hence the :math:`\sqrt{2}` below. For more information see the book `Solid Mechanics, A. Bertram and R. Glüge, `_ which is available (in german) online. :: def eps(v): gdim = v.geometric_dimension() e = sym(grad(v)) if gdim == 2: return as_vector([e[0, 0], e[1, 1], 0.0, 2 ** 0.5 * e[0, 1]]) elif gdim == 3: return as_vector( [ e[0, 0], e[1, 1], e[2, 2], 2 ** 0.5 * e[0, 1], 2 ** 0.5 * e[0, 2], 2 ** 0.5 * e[1, 2], ] ) else: assert False We subclass the ``dolfin.NonlinearProblem`` as in the other examples. :: class RambergOsgoodProblem(NonlinearProblem): def __init__(self, mesh, deg_d, deg_q, material, **kwargs): NonlinearProblem.__init__(self) self.E = material["E"] self.NU = material["NU"] self.ALPHA = material["ALPHA"] self.NEXP = material["N"] self.SIGY = material["SIGY"] metadata = {"quadrature_degree": deg_q, "quadrature_scheme": "default"} dxm = dx(metadata=metadata) cell = mesh.ufl_cell() self.gdim = mesh.geometric_dimension() # solution field Ed = VectorElement("CG", cell, degree=deg_d) self.V = FunctionSpace(mesh, Ed) self.d = Function(self.V, name="displacement") # generic quadrature function spaces q = "Quadrature" voigt = self.gdim * 2 # 4 or 6 QF = FiniteElement(q, cell, deg_q, quad_scheme="default") QV = VectorElement(q, cell, deg_q, quad_scheme="default", dim=voigt) QT = TensorElement(q, cell, deg_q, quad_scheme="default", shape=(voigt, voigt)) VQF, VQV, VQT = [FunctionSpace(mesh, Q) for Q in [QF, QV, QT]] self.NGAUSS = VQF.dim() # quadrature function self.q_sigma = Function(VQV, name="current stresses") self.q_eps = Function(VQV, name="current strains") self.q_dsigma_deps = Function(VQT, name="stress-strain tangent") dd = TrialFunction(self.V) d_ = TestFunction(self.V) # int eps : C : eps dx - f_ext + int eps : sigma dx == 0 is expected? # dR + R - f_ext == 0 # need to subtract external forces later self.R = inner(eps(d_), self.q_sigma) * dxm self.dR = inner(eps(dd), self.q_dsigma_deps * eps(d_)) * dxm self.calculate_eps = LocalProjector(eps(self.d), VQV, dxm) self.assembler = None def evaluate_material(self): # project the strain onto their quadrature spaces and ... self.calculate_eps(self.q_eps) strain = self.q_eps.vector().get_local() stress = self.q_sigma.vector().get_local() # ... "manually" evaluate_material the material ... sigma, ddsdde = solve_ramberg_osgood( self.E, self.NU, self.ALPHA, self.NEXP, self.SIGY, self.NGAUSS, self.gdim, strain.reshape(self.NGAUSS, self.gdim * 2), stress.reshape(self.NGAUSS, self.gdim * 2), ) # ... and write the calculated values into their quadrature spaces. set_q(self.q_sigma, sigma) set_q(self.q_dsigma_deps, ddsdde) def update(self): # not needed for Ramberg Osgood pass def set_bcs(self, bcs): # Only now (with the bcs) can we initialize the assembler self.assembler = SystemAssembler(self.dR, self.R, bcs) def F(self, b, x): if not self.assembler: raise RuntimeError("You need to `.set_bcs(bcs)` before the solve!") self.evaluate_material() self.assembler.assemble(b, x) def J(self, A, x): self.assembler.assemble(A) Examples -------- Simple Tension Test ******************* To test the above implementation we compare our numerical results to the analytical solution for a (simple) tension test in 2D. :: class AnalyticalSolution: """base class for ramberg osgood material solutions""" def __init__(self, max_load, **kwargs): self.load = max_load self.E = kwargs.get("E", 210e3) self.NU = kwargs.get("NU", 0.3) self.ALPHA = kwargs.get("ALPHA", 0.01) self.N = kwargs.get("N", 5.0) self.K = self.E / (1.0 - 2.0 * self.NU) self.G = self.E / 2.0 / (1.0 + self.NU) self.SIGY = kwargs.get("SIGY", 500.0) def energy(self): assert np.sum(self.sigma) > 0.0 return np.trapz(self.sigma, self.eps) class SimpleTensionSolution2D(AnalyticalSolution): """analytical solution for simple tension in 2D""" def __init__(self, max_load, **kwargs): super().__init__(max_load, **kwargs) def solve(self): from scipy.optimize import newton from sympy import symbols, Derivative, lambdify, sqrt E = self.E K = self.K G = self.G ALPHA = self.ALPHA SIGY = self.SIGY N = self.N def f(x, s): """equation to solve is eps33(x, s) = 0 x: sigma33 s: sigma22 (given as tension direction) """ return (x + s) / 3.0 / K + ( 1.0 / 2.0 / G + 3.0 * ALPHA / 2.0 / E * (np.sqrt((s - x) ** 2 + x * s) / SIGY) ** (N - 1.0) ) * (2.0 * x - s) / 3.0 x, s = symbols("x s") f_sym = (x + s) / 3.0 / K + ( 1.0 / 2.0 / G + 3.0 * ALPHA / 2.0 / E * (sqrt((s - x) ** 2 + x * s) / SIGY) ** (N - 1.0) ) * (2.0 * x - s) / 3.0 Df = Derivative(f_sym, x) df = lambdify((x, s), Df.doit(), "numpy") s = np.linspace(0, self.load) # sigma22 x = np.zeros_like(s) # initial guess s33 = newton(f, x, fprime=df, args=(s,), tol=1e-12) e11 = (s + s33) / 3.0 / K + ( 1.0 / 2.0 / G + 3.0 * ALPHA / 2.0 / E * (np.sqrt((s - s33) ** 2 + s * s33) / SIGY) ** (N - 1.0) ) * (-(s33 + s)) / 3.0 e22 = (s + s33) / 3.0 / K + ( 1.0 / 2.0 / G + 3.0 * ALPHA / 2.0 / E * (np.sqrt((s - s33) ** 2 + s * s33) / SIGY) ** (N - 1.0) ) * (2.0 * s - s33) / 3.0 self.sigma = s self.eps = e22 return e11, e22, s Next we define little helper functions to define neumann and dirichlet type boundary conditions. :: def get_neumann(dim, force): f = Expression(("0.0", "F * time"), degree=0, F=force, time=0.0, name="f") class Top(SubDomain): tol = 1e-6 def inside(self, x, on_boundary): return on_boundary and near(x[1], 1.0, self.tol) neumann = Top() return f, neumann def get_dirichlet(dim, V): bcs = [] class Bottom(SubDomain): tol = 1e-6 def inside(self, x, on_boundary): return on_boundary and near(x[1], 0.0, self.tol) origin = CompiledSubDomain("near(x[0], 0.0) && near(x[1], 0.0)") bcs.append(DirichletBC(V.sub(1), Constant(0.0), Bottom())) bcs.append(DirichletBC(V, Constant((0.0, 0.0)), origin, method="pointwise")) return bcs The function to run the simple tension test. :: def simple_tension(mesh, matparam, pltshow=False): """ simple tension test """ ro = RambergOsgoodProblem(mesh, deg_d=1, deg_q=1, matparam) facets = MeshFunction("size_t", mesh, mesh.topology().dim() - 1) ds = Measure("ds")(subdomain_data=facets) facets.set_all(0) # external load max_load = 2718.0 gdim = mesh.geometric_dimension() traction, neumann = get_neumann(gdim, max_load) neumann.mark(facets, 99) d_ = TestFunction(ro.V) force = dot(traction, d_) * ds(99) ro.R -= force # dirichlet bcs bcs = get_dirichlet(gdim, ro.V) ro.set_bcs(bcs) solver = NewtonSolver() solver.parameters["linear_solver"] = "mumps" solver.parameters["maximum_iterations"] = 10 solver.parameters["error_on_nonconvergence"] = False x_at_top = (0.5, 1.0) nTime = 10 load_steps = np.linspace(0, 1, num=nTime + 1)[1:] iterations = np.array([], dtype=np.int) displacement = [0.0, ] load = [0.0, ] for (inc, time) in enumerate(load_steps): print("Load Increment:", inc) traction.time = time niter, converged = solver.solve(ro, ro.d.vector()) assert converged iterations = np.append(iterations, niter) # load displacement data displacement.append(ro.d(x_at_top)[1]) load.append(traction(x_at_top)[1]) # ### analytical solution displacement = np.array(displacement) load = np.array(load) sol = SimpleTensionSolution2D(max_load, **matparam) e11, e22, s22 = sol.solve() w = sol.energy() I = np.trapz(load, displacement) assert np.isclose((w - I) / w, 0.0, atol=1e-2) if pltshow: fig, ax = plt.subplots() ax.plot(e22, s22, "r-", label="analytical") ax.plot(displacement, load, "bo", label="num") ax.set_xlabel(r":math:`\varepsilon_{yy}`") ax.set_ylabel(r":math:`\sigma_{yy}`") ax.legend() ax.xaxis.set_major_formatter(FormatStrFormatter("%.2f")) plt.show() if __name__ == "__main__": mesh = UnitSquareMesh(32, 32) material = { "E": 210e3, "NU": 0.3, "ALPHA": 0.01, "N": 5, "SIGY": 500.0 } simple_tension(mesh, material, pltshow=False) Setting ``pltshow=True`` you should see something like this: .. image:: ro.png ::