Plate with hole =============== The analytic solution to the `infinite plate with hole in 2D plane stress `_ provides a solution for the stress and the displacement field. The stress field is multiplied with the boundary normal vector :math:`\boldsymbol n` and applied as traction boundary conditions. The resulting FEM displacement field is compared to the analytic displacement field. .. image:: plate_with_hole.png :: from helper import * import pathlib import math class PlateWithHoleSolution: def __init__(self, E, nu, radius=1.0, L=10.0, load=10.0): self.radius = radius self.L = L self.load = load self.E = E self.nu = nu def polar(self, x): r = math.hypot(x[0], x[1]) theta = math.atan2(x[1], x[0]) return r, theta def displacement(self, x): r, theta = self.polar(x) a = self.radius T = self.load Ta_8mu = T * a / (4 * self.E / (1.0 + 1.0 * self.nu)) k = (3.0 - self.nu) / (1.0 + self.nu) ct = math.cos(theta) c3t = math.cos(3 * theta) st = math.sin(theta) s3t = math.sin(3 * theta) fac = 2 * math.pow(a / r, 3) ux = Ta_8mu * ( r / a * (k + 1.0) * ct + 2.0 * a / r * ((1.0 + k) * ct + c3t) - fac * c3t ) uy = Ta_8mu * ( (r / a) * (k - 3.0) * st + 2.0 * a / r * ((1.0 - k) * st + s3t) - fac * s3t ) return ux, uy def stress(self, x): r, theta = self.polar(x) T = self.load a = self.radius cos2t = math.cos(2 * theta) cos4t = math.cos(4 * theta) sin2t = math.sin(2 * theta) sin4t = math.sin(4 * theta) fac1 = (a * a) / (r * r) fac2 = 1.5 * fac1 * fac1 sxx = T - T * fac1 * (1.5 * cos2t + cos4t) + T * fac2 * cos4t syy = -T * fac1 * (0.5 * cos2t - cos4t) - T * fac2 * cos4t sxy = -T * fac1 * (0.5 * sin2t + sin4t) + T * fac2 * sin4t return sxx, syy, sxy When subclassing from ``dolfin.UserExpression``, make sure to override ``value_shape`` for non-scalar expressions. :: class StressSolution(UserExpression): def __init__(self, solution, **kwargs): super().__init__(**kwargs) self.solution = solution def eval(self, value, x): sxx, syy, sxy = self.solution.stress(x) value[0] = sxx value[1] = sxy value[2] = sxy value[3] = syy def value_shape(self): return (2, 2) class DisplacementSolution(UserExpression): def __init__(self, solution, **kwargs): super().__init__(**kwargs) self.solution = solution def eval(self, value, x): ux, uy = self.solution.displacement(x) value[0] = ux value[1] = uy def value_shape(self): return (2,) As we want to compare different ways to define the strain vector, we have both this vector ``eps`` and a corresponding elasticity matrix ``C`` as parameters to the FEM solution. :: def solve_fem(mesh, traction, eps, C): """ mesh: FEniCS mesh traction: boundary traction eps: FEniCS expression that calculates a strain vector from the DOFs C: corresponding numpy elasticity matrix """ V = VectorFunctionSpace(mesh, "P", 2) q = "Quadrature" cell = mesh.ufl_cell() q_dim = C.shape[0] deg_u = 2 deg_q = 2 QV = VectorElement(q, cell, deg_q, quad_scheme="default", dim=q_dim) QT = TensorElement(q, cell, deg_q, quad_scheme="default", shape=(q_dim, q_dim)) VQV, VQT = [FunctionSpace(mesh, Q) for Q in [QV, QT]] metadata = {"quadrature_degree": deg_q, "quadrature_scheme": "default"} dxm = dx(metadata=metadata) q_sigma = Function(VQV, name="current stresses") q_eps = Function(VQV, name="current strains") q_dsigma_deps = Function(VQT, name="stress-strain tangent") du, u_ = TrialFunction(V), TestFunction(V) R = -inner(eps(u_), q_sigma) * dxm + inner(traction, u_) * ds dR = inner(eps(du), dot(q_dsigma_deps, eps(u_))) * dxm n = len(q_sigma.vector().get_local()) // q_dim C_values = np.tile(C.flatten(), n) q_dsigma_deps.vector().set_local(C_values.flatten()) q_dsigma_deps.vector().apply("insert") bc0 = DirichletBC(V.sub(0), 0.0, plane_at(0, "x")) bc1 = DirichletBC(V.sub(1), 0.0, plane_at(0, "y")) A, b = assemble_system(dR, R, [bc0, bc1]) u = Function(V) solve(A, u.vector(), b) return u We want to illustrate multiple defintions of the strain vector that may each more or less advantageous, depending on the model and mainly of the type of norm you need to calculate. :: formulations = {} E, nu = 20000, 0.2 C11 = E / (1.0 - nu * nu) C12 = C11 * nu C33 = C11 * 0.5 * (1.0 - nu) Voigt notation -------------- The classic Voigt notation is totally fine if you need to define a strain norm. :: def eps_voigt(u): e = sym(grad(u)) return as_vector((e[0, 0], e[1, 1], 2 * e[0, 1])) C_voigt = np.array([[C11, C12, 0.0], [C12, C11, 0.0], [0.0, 0.0, C33]]) formulations["Voigt"] = (eps_voigt, C_voigt) Mandel notation --------------- The mandel notation keeps the property that of .. math :: \boldsymbol \sigma : \boldsymbol \sigma \equiv \sigma_\text{mandel} . \sigma_\text{mandel} :: def eps_mandel3(u): e = sym(grad(u)) return as_vector((e[0, 0], e[1, 1], 2 ** 0.5 * e[0, 1])) C_mandel3 = np.array([[C11, C12, 0.0], [C12, C11, 0.0], [0.0, 0.0, 2 * C33]]) formulations["Mandel3"] = (eps_mandel3, C_mandel3) For plane strain, it also makes sense to include a fourth :math:`{}_{zz}` component to conveniently deal with the nonzero :math:`\sigma_{zz}` :: def eps_mandel4(u): e = sym(grad(u)) return as_vector((e[0, 0], e[1, 1], 0.0, 2 ** 0.5 * e[0, 1])) C_mandel4 = np.array( [ [C11, C12, 0.0, 0.0], [C12, C11, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 2 * C33], ] ) formulations["Mandel4"] = (eps_mandel4, C_mandel4) All formulations, though, have a comparable error to the analytic solution. :: L, radius = 4.0, 1.0 plate_with_hole = PlateWithHoleSolution(L=L, E=E, nu=nu, radius=radius) mesh = Mesh() xdmf_file = pathlib.Path(__file__).parents[1] / "test/plate.xdmf" with XDMFFile(xdmf_file.as_posix()) as f: f.read(mesh) n = FacetNormal(mesh) stress = StressSolution(plate_with_hole, degree=2) traction = dot(stress, n) for name, formulation in formulations.items(): u = solve_fem(mesh, traction, *formulation) disp = DisplacementSolution(plate_with_hole, degree=2) error = errornorm(disp, u, degree_rise=0) print(f"{name:10s} || u_fem - u_analytic || = {error}") XDMFFile("plate_with_hole.xdmf").write(u) Results in :: Voigt || u_fem - u_analytic || = 3.920310241053112e-08 Mandel3 || u_fem - u_analytic || = 3.920310257183142e-08 Mandel4 || u_fem - u_analytic || = 3.920310257183142e-08 ::