Implicit gradient-enhanced damage model in dolfinx ================================================== For the theory and the constitutive model, please refer to the dolfin version :ref:`gdm-label`. Here, you see the "quadrature" approach working in dolfinx without the need of `LocalProject`. :: from gdm_constitutive import * from gdm_analytic import PeerlingsAnalytic import dolfinx as df from petsc4py import PETSc from mpi4py import MPI import ufl import basix import matplotlib.pyplot as plt class GDMProblemX: def __init__(self, mesh, mat, deg=2, q_deg=4, fd_np=None): self.mesh, self.mat= mesh, mat Ed = ufl.VectorElement("CG", mesh.ufl_cell(), degree=deg) Ee = ufl.FiniteElement("CG", mesh.ufl_cell(), degree=deg) self.V = df.fem.FunctionSpace(mesh, (Ed * Ee)) self.Vd, self.Ve = self.V.sub(0), self.V.sub(1) self.u = df.fem.Function(self.V) q = "Quadrature" cell = mesh.ufl_cell() voigt = 3 QF = ufl.FiniteElement(q, cell, q_deg, quad_scheme="default") QV = ufl.VectorElement(q, cell, q_deg, quad_scheme="default", dim=voigt) QT = ufl.TensorElement( q, cell, q_deg, quad_scheme="default", shape=(voigt, voigt) ) VQF, VQV, VQT = [df.fem.FunctionSpace(mesh, Q) for Q in [QF, QV, QT]] self.q_sigma = df.fem.Function(VQV) self.q_e = df.fem.Function(VQF) self.q_eeq = df.fem.Function(VQF) self.q_dsigma_deps = df.fem.Function(VQT) self.q_dsigma_de = df.fem.Function(VQV) self.q_deeq_deps = df.fem.Function(VQV) # define functions dd, de = ufl.TrialFunctions(self.V) d_, e_ = ufl.TestFunctions(self.V) self.d, self.e = ufl.split(self.u) # define form self.metadata = {"quadrature_degree": q_deg, "quadrature_scheme": "default"} self.dxm = ufl.dx(metadata=self.metadata) # prepare strain evaluation eps = mat.eps map_c = mesh.topology.index_map(mesh.topology.dim) num_cells = map_c.size_local + map_c.num_ghosts self.cells = np.arange(0, num_cells, dtype=np.int32) basix_celltype = getattr(basix.CellType, mesh.topology.cell_type.name) self.q_points, wts = basix.make_quadrature(basix_celltype, q_deg) self.strain_expr = df.fem.Expression(eps(self.d), self.q_points) self.e_expr = df.fem.Expression(self.e, self.q_points) self.evaluate_constitutive_law() self.bcs = None if fd_np is None: fd_np = lambda x: 1.0 Vfd = df.fem.FunctionSpace(mesh, ("DG", 0)) fd = df.fem.Function(Vfd) fd.x.array[:] = fd_np(Vfd.tabulate_dof_coordinates()) R = fd * ufl.inner(eps(d_), self.q_sigma) * self.dxm R += e_ * (self.e - self.q_eeq) * self.dxm R += ufl.dot(ufl.grad(e_), mat.l ** 2 * ufl.grad(self.e)) * self.dxm dR = fd * ufl.inner(eps(d_), self.q_dsigma_deps * eps(dd)) * self.dxm dR += fd * ufl.inner(eps(d_), self.q_dsigma_de * de) * self.dxm dR += e_ * (de - ufl.dot(self.q_deeq_deps, eps(dd))) * self.dxm dR += ufl.dot(ufl.grad(e_), mat.l ** 2 * ufl.grad(de)) * self.dxm self.R, self.dR = df.fem.form(R), df.fem.form(dR) self.solver = None def evaluate_constitutive_law(self): with df.common.Timer("compute strains"): strain = self.strain_expr.eval(self.cells) e = self.e_expr.eval(self.cells) with df.common.Timer("evaluate constitutive law"): self.mat.evaluate(strain.flatten(), e.flatten()) with df.common.Timer("assign q space"): self.q_sigma.x.array[:] = self.mat.sigma.flat self.q_dsigma_deps.x.array[:] = self.mat.dsigma_deps.flat self.q_dsigma_de.x.array[:] = self.mat.dsigma_de.flat self.q_eeq.x.array[:] = self.mat.eeq.flat self.q_deeq_deps.x.array[:] = self.mat.deeq.flat def update(self): e = self.e_expr.eval(self.cells) self.mat.update(e.flatten()) def form(self, x: PETSc.Vec): """This function is called before the residual or Jacobian is computed. This is usually used to update ghost values. Parameters ---------- x The vector containing the latest solution """ x.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) x.copy(self.u.vector) self.u.vector.ghostUpdate( addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD ) self.evaluate_constitutive_law() def J(self, x: PETSc.Vec, A: PETSc.Mat, P=None): """Assemble the Jacobian matrix.""" A.zeroEntries() df.fem.petsc.assemble_matrix(A, self.dR, bcs=self.bcs) A.assemble() def F(self, x: PETSc.Vec, b: PETSc.Vec): """Assemble the residual F into the vector b.""" # Reset the residual vector with b.localForm() as b_local: b_local.set(0.0) df.fem.petsc.assemble_vector(b, self.R) df.fem.apply_lifting(b, [self.dR], bcs=[self.bcs], x0=[x], scale=-1.0) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) df.fem.set_bc(b, self.bcs, x, -1.0) def solve(self): if self.solver is None: self.a = self.dR self.L = self.R self.solver = df.nls.petsc.NewtonSolver(MPI.COMM_WORLD, self) self.solver.atol = 1.e-8 return self.solver.solve(self.u) def plane_at(x): """ """ def boundary(c): return np.isclose(c[0, :], x) return boundary def gdm_error(n_elements): """ ... evaluated in 2D """ e = PeerlingsAnalytic() mesh = df.mesh.create_rectangle( MPI.COMM_WORLD, [[0, 0], [e.L / 2.0, 1]], [n_elements, 1], df.mesh.CellType.quadrilateral, ) mat = GDMPlaneStrain(E=e.E, nu=0.0, ft=e.E * e.kappa0, l=e.l, dmg=damage_perfect) def area(coords): A = np.full(len(coords), 10.0) A[coords[:, 0] < e.W / 2.0] *= 1.0 - e.alpha return A problem = GDMProblemX(mesh, mat, fd_np=area) V = problem.Vd # space of displacements to apply the BCs b_facets_l = df.mesh.locate_entities_boundary(mesh, 1, plane_at(0.0)) b_facets_r = df.mesh.locate_entities_boundary(mesh, 1, plane_at(e.L / 2.0)) b_dofs_lx = df.fem.locate_dofs_topological(V.sub(0), 1, b_facets_l) b_dofs_ly = df.fem.locate_dofs_topological(V.sub(1), 1, b_facets_l) b_dofs_rx = df.fem.locate_dofs_topological(V.sub(0), 1, b_facets_r) u_bc = df.fem.Constant(mesh, 0.0) problem.bcs = [ df.fem.dirichletbc(PETSc.ScalarType(0), b_dofs_lx, V.sub(0)), df.fem.dirichletbc(PETSc.ScalarType(0), b_dofs_ly, V.sub(1)), df.fem.dirichletbc(u_bc, b_dofs_rx, V.sub(0)), ] for t in np.linspace(0.0, 1.0, 11): u_bc.value = t * e.deltaL / 2.0 iterations, converged = problem.solve() assert converged problem.update() # Honestly, I have not idea (yet) how to properly/easily compute the # errornorm to the analytic solution. Thus, we extract the dof # coordinates x to compute analytic dof values. e_fem = problem.u.sub(1).collapse() xs = e_fem.function_space.tabulate_dof_coordinates()[:, 0] e_exact = [e.e(x) for x in xs] return np.linalg.norm(e_fem.x.array - e_exact) def convergence_test(): ns = [50, 100, 200, 400] errors = [] for n in ns: error = gdm_error(n) print(f"Error to analytic solution with {n} elements is {error}.") errors.append(error) ps = [] for i in range(len(ns) - 1): p = np.log(errors[i] - errors[i + 1]) / np.log(1.0 / ns[i] - 1.0 / ns[i + 1]) ps.append(p) import matplotlib.pyplot as plt plt.figure(figsize=(6, 3)) plt.loglog(ns, errors, "-ko") plt.xlabel("# elements") plt.ylabel("error") plt.tight_layout() plt.savefig("gdm_convergencex.png") plt.show() if __name__ == "__main__": convergence_test()