.. code:: ipython3 %matplotlib inline import matplotlib.pyplot as plt from IPython.display import set_matplotlib_formats set_matplotlib_formats('svg', 'pdf') import numpy as np from numpy.random import default_rng from material1D import ElasticMaterial1D, PerfectPlasticMaterial1D, DamageMaterial1D, PlasticHardeningMaterial1D from material3D import EOSMaterial,PerfectPlasticMaterial, YieldFunction, DruckerPragerYieldFunction Material models =============== Uniaxial damage model --------------------- We assume the material to consist of “fibers” that are perfectly brittle, meaning they instantly fail at a critical point. But since not all fibers fail at the same time, we have a reduction of affected area. For :math:`t=0` we have :math:`A_0=A` and for a :math:`t_\mathrm{end}` we have :math:`A_\mathrm{end}=0`. We get the effective stress .. math:: \bar\sigma = \frac {A}{\bar A} \sigma. We define a damage parameter .. math:: \omega = 1-\frac{\bar A}{A} .. math:: \bar \sigma =E\varepsilon .. math:: \sigma =(1-\omega)E\varepsilon The damage parameter depends on the strain :math:`\omega =g(\varepsilon)` Perfect Plastic Model --------------------- Todo: Introduction to plastic models Monotonic loading ----------------- .. code:: ipython3 e=np.linspace(0,0.11,100) E = 1000 s_yield = 40 #f = lambda s:s-np.log(s+1)*15 #df = lambda s:1-1/(s+1) #ddf= lambda s:1/(s+1)**2 f = lambda s:s-s_yield df = lambda s:1 ddf= lambda s:0 el_damage = DamageMaterial1D(E,0.03) sigma_damage = [el_damage(ei) for ei in e] el = ElasticMaterial1D(E) sigma_el = [el(ei) for ei in e] pl = PerfectPlasticMaterial1D(E, f, df ,ddf) sigma_pl = [pl(ei) for ei in e] pl_hard = PlasticHardeningMaterial1D(E, 250, 40) sigma_pl_hard = [pl_hard(ei) for ei in e] plt.plot(e,sigma_el,label="Elastic") plt.plot(e,sigma_pl,label="Perfect plastic") plt.plot(e,sigma_damage,label="Isotropic damage") plt.plot(e,sigma_pl_hard,label="Isotropic hardening") plt.xlabel(r"$ \varepsilon $") plt.ylabel(r"$\sigma$") plt.legend() plt.show() Non monotonic loading (Damage model) ------------------------------------ .. code:: ipython3 e_unloading = np.concatenate((np.linspace(0,0.04,100),np.linspace(0.04,0.0,100))) s_el_damage = DamageMaterial1D(E,0.03) sigma_damage = [s_el_damage(ei) for ei in e_unloading] plt.xlim([0,0.1]) plt.ylim([0,30]) plt.xlabel(r"$ \varepsilon $") plt.ylabel(r"$\sigma$") plt.title("Loading and unloading") plt.plot(e_unloading,sigma_damage) plt.show() #Load again. The state of the material is still saved sigma_damage = [s_el_damage(ei) for ei in e] plt.xlim([0,0.1]) plt.ylim([0,30]) plt.xlabel(r"$ \varepsilon $") plt.ylabel(r"$\sigma$") plt.title("Reloading") plt.plot(e,sigma_damage) plt.show() Non monotonic loading (Plastic model) ------------------------------------- .. code:: ipython3 e_unloading = np.concatenate((np.linspace(0,0.06,100),np.linspace(0.06,0.0,100))) pl = PerfectPlasticMaterial1D(E, f, df ,ddf) sigma_pl = [pl(ei) for ei in e_unloading] plt.xlim([0,0.1]) plt.ylim([-20,50]) plt.xlabel(r"$ \varepsilon $") plt.ylabel(r"$\sigma$") plt.title("Loading and unloading") plt.plot(e_unloading,sigma_pl) plt.show() #Load again. The state of the material is still saved sigma_pl = [pl(ei) for ei in e] plt.xlim([0,0.1]) plt.ylim([-20,50]) plt.xlabel(r"$ \varepsilon $") plt.ylabel(r"$\sigma$") plt.title("Reloading") plt.plot(e,sigma_pl) plt.show() Non monotonic loading (Plastic model with hardening) ---------------------------------------------------- .. code:: ipython3 e_unloading = np.concatenate((np.linspace(0,0.06,100),np.linspace(0.06,0.0,100))) pl = PlasticHardeningMaterial1D(E, 250, 40) sigma_pl = [pl(ei) for ei in e_unloading] plt.xlim([0,0.1]) plt.ylim([-20,50]) plt.xlabel(r"$ \varepsilon $") plt.ylabel(r"$\sigma$") plt.title("Loading and unloading") plt.plot(e_unloading,sigma_pl) plt.show() #Load again. The state of the material is still saved sigma_pl = [pl(ei) for ei in e] plt.xlim([0,0.1]) plt.ylim([-20,50]) plt.xlabel(r"$ \varepsilon $") plt.ylabel(r"$\sigma$") plt.title("Reloading") plt.plot(e,sigma_pl) plt.show() Equation of state with perfect plasticity ----------------------------------------- For this example we consider a 3d space, but only with principal stresses and strains. In one dimension the differentiation between hydrostatic pressure and other stresses would have been useless. We assume an energy-independent EOS with the general form .. math:: P(\mu) = K1\mu+K2\mu^2+K3\mu^3 In the easiest case, :math:`P` is linear and we have :math:`K1=\lambda` the compression modulus and :math:`K2=K3=0`. In the following calculations we will ignore shear components of stress and strain and assume a uniaxial strain (:math:`\sigma _{22} = \sigma_{33} =0`) .. code:: ipython3 def sigma_dev(sigma): return sigma - (1/3) * np.sum(sigma) def sigma_equiv(sigma): return np.sqrt((3/2)*np.sum(sigma_dev(sigma)**2)) eps_uni = np.array([1,0,0]) eps_increment = np.linspace(0,0.04,100) E = 10000 nu = 0.3 G = E/(2*(1+nu)) K = E*nu/((1+nu)*(1-2*nu)) Linear elastic case: :math:`P=K\cdot \mu` .. code:: ipython3 mat_lin = EOSMaterial(G,K,YieldFunction(40)) sigma_lin = np.array([mat_lin(eps_uni*e) for e in eps_increment]) .. code:: ipython3 plt.plot(eps_increment,[sigma_equiv(sigma) for sigma in sigma_lin]) plt.xlabel("Uniaxial strain "+r"$\varepsilon_{11}$") plt.ylabel("Equivalent stress "r"$\sigma_\mathrm{eq}$") plt.show() .. code:: ipython3 plt.plot(eps_increment,[sigma[0] for sigma in sigma_lin]) plt.xlabel("Uniaxial strain "+r"$\varepsilon_{11}$") plt.ylabel(""r"$\sigma_{11}$") plt.show() Case with EOS .. code:: ipython3 eps_unloading = np.concatenate((np.linspace(0,0.04,100),np.linspace(0.04,0.00,100))) eps_reloading = np.linspace(0,0.04,100) def P(y): return 0.3*( K*y + 20 * K * y**2 + 100*K*y**3) mat_eos = EOSMaterial(G,K,YieldFunction(40),P=P) sigma_eos = [mat_eos(eps_uni*e) for e in eps_unloading] plt.xlim([0,0.06]) plt.ylim([-30,200]) plt.xlabel(r"$ \varepsilon_{11} $") plt.ylabel(r"$\sigma_{11}$") plt.title("Loading and unloading") plt.plot(eps_unloading,[sigma[0] for sigma in sigma_eos]) plt.show() sigma_eos = [mat_eos(eps_uni*e) for e in eps_reloading] plt.xlim([0,0.06]) plt.ylim([-30,200]) plt.xlabel(r"$ \varepsilon_{11} $") plt.ylabel(r"$\sigma_{11}$") plt.title("Reloading") plt.plot(np.linspace(0,0.1,100),[sigma[0] for sigma in sigma_eos]) plt.show() Drucker-Prager yield condition ============================== First example with linear elasticity, second with EOS. .. code:: ipython3 eps_increment = np.linspace(0,0.04,100) E = 100000 nu = 0.3 G = E/(2*(1+nu)) K = E*nu/((1+nu)*(1-2*nu)) A,B=500,0.05 def P(y): return 0.3*( K*y + 20 * K * y**2 + 100*K*y**3) #return np.exp(K*0.016*y)-1 pl = EOSMaterial(G,K,DruckerPragerYieldFunction(A,B),P=None) #sigma_pl = [pl(ei)[0] for ei in e_unloading] sigma_pl = np.array([pl(eps_uni*e) for e in eps_increment]) #plt.xlim([0,0.06]) #plt.ylim([-20,50]) plt.xlabel(r"$ I_1$") plt.ylabel(r"$J_2$") plt.title("Loading") plt.plot(np.sum(sigma_pl,axis=1),[sigma_equiv(sigma) for sigma in sigma_pl], label="Loading path") plt.plot( np.linspace(0,4000,100),A+B*np.linspace(0,4000,100),label="Yield-Surface") plt.legend() plt.show() .. code:: ipython3 pl = EOSMaterial(G,K,DruckerPragerYieldFunction(A,B),P=P) #sigma_pl = [pl(ei)[0] for ei in e_unloading] sigma_pl = np.array([pl(eps_uni*e) for e in eps_increment]) #plt.xlim([0,0.06]) #plt.ylim([-20,50]) plt.xlabel(r"$ I_1$") plt.ylabel(r"$J_2$") plt.title("Loading") plt.plot(np.sum(sigma_pl,axis=1),[sigma_equiv(sigma) for sigma in sigma_pl], label="Loading path") plt.plot( np.linspace(0,4000,100),A+B*np.linspace(0,4000,100),label="Yield-Surface") plt.legend() plt.show()